

Wir schaffen Wissen – heute für morgen

Tuning of ELECTRONIC states of TITANATES: From 3D trough 2D to 1D

Milan Radovic


```
PAUL SCHERRER INSTITUT
```


PLD+ARPES facilities at SIS beamline (SLS-PSI)

The dl/dV curves of the different samples:

♦ The red curve: Sample B determines conducting bulk and insulating surfaces
♦ Blue curve: Sample A consists a finite density of states at the Fermi level –

The surface itself is **conducting**.

Metallic surface in/on STO: facts and doubts?

Proposed scenarios:

the 2DEG is generated by exposure to light, which creates oxygen vacancies (Meevasana et al.) Cleaving procedure creates Oxygen vacancies (Santander-Syro et al).

Questions/ motivations: FS composed by? What about dimensionality? Details?Control of LDE gas?

- All FS components differ drastically from expectations for bulk
- From 3 prolate spheroids to:
 - $d_{xy} \rightarrow 2D$ cylinder(s)
 - $d_{xz}, d_{yz} \rightarrow 3D$ oblate ellipsoids
- "Stretching" of d_{xz} , d_{yz} sheets along k_z signals crossover to confinement
- → electronic reconstruction extends multiple unit cells from surface

mz=15 me, 2 x10²⁰ cm³ n(0) 0 :14 e /a2

Study of Metallic surface on STO: Surface-driven state with 3D dispersion

Proposed scenario: role of surface distorsion

Surface of STO(001) is known to exhibit Ti-O buckling. Likely that photons trigger/enhance/align this behavior and cause the cristaltrasition.

○ Can explain Ti⁴⁺ → Ti³⁺ shift in core level spectra

PAUL SCHERRER INSTITUT

• Can account for formation of in-gap states N.C. Plumb et al. Phys. Rev. Lett. 113, 086801 (2014)

More: Spin Polarized 2DEG!

More: Spin Polarized 2DEG!

Energy-momentum intensity map along (010) and fits using a parabolic-band model subject Rashba and Zeeman splittings. Zeeman field is along (001).

Tuning of electronic states via an interface!

Tuning of electronic states via an interface!

New Phenomenon at STO interface

Superconductivity above 100 K in single-layer FeSe films on doped $SrTiO_3$

Jian-Feng Ge¹, Zhi-Long Liu¹, Canhua Liu^{1,2*}, Chun-Lei Gao^{1,2}, Dong Qian^{1,2}, Qi-Kun Xue^{3*}, Ying Liu^{1,2,4} and Jin-Feng Jia^{1,2*}

Interfacial mode coupling as the origin of the enhancement of T_c in FeSe films on SrTiO₃

J. J. Lee^{1,2}*, F. T. Schmitt¹*, R. G. Moore¹*, S. Johnston^{3,4,5}, Y.-T. Cui¹, W. Li¹, M. Yi^{1,2}, Z. K. Liu^{1,2}, M. Hashimoto⁶, Y. Zhang^{1,7}, D. H. Lu⁶, T. P. Devereaux¹, D.-H. Lee^{8,9} & Z.-X. Shen^{1,2}

Electronic structure of STO surface with a "low doping".

Z. Wang, MR, et al., Nature Materials 15, 835-839 (2016)

Polaron at STO surface

Z. Wang, MR, et al., Nature Materials 15, 835-839 (2016)

Polaron at STO surface

m*=effective mass Z- quasiparticle residue

Z=1- $\alpha/2$ (Frohlich model)

 α =2.8 coupling strength for lover carrier density

Z. Wang, MR, et al., Nature Materials 15, 835-839 (2016)